หน้าเว็บ

วันพุธที่ 28 สิงหาคม พ.ศ. 2556

Trigonometric function


ฟังก์ชันตรีโกณมิติ (อังกฤษTrigonometric function) คือ ฟังก์ชันของมุม ซึ่งมีความสำคัญในการศึกษารูปสามเหลี่ยมและปรากฏการณ์ในลักษณะเป็นคาบ ฟังก์ชันอาจนิยามด้วยอัตราส่วนของด้าน 2 ด้านของรูปสามเหลี่ยมมุมฉาก หรืออัตราส่วนของพิกัดของจุดบนวงกลมหนึ่งหน่วย หรือนิยามในรูปทั่วไปเช่น อนุกรมอนันต์ หรือสมการเชิงอนุพันธ์ รูปสามเหลี่ยมที่นำมาใช้จะอยู่ในระนาบแบบยุคลิด ดังนั้น ผลรวมของมุมทุกมุมจึงเท่ากับ 180° เสมอ
ในปัจจุบัน มีฟังก์ชันตรีโกณมิติอยู่ 6 ฟังก์ชันที่นิยมใช้กันดังตารางข้างล่าง (สี่ฟังก์ชันสุดท้ายนิยามด้วยความสัมพันธ์กับฟังก์ชันอื่น แต่ก็สามารถนิยามด้วยเรขาคณิตได้)
ฟังก์ชันตัวย่อความสัมพันธ์
ไซน์ (Sine)sin\sin \theta = \cos \left(\frac{\pi}{2} - \theta \right) \,
โคไซน์ (Cosine)cos\cos \theta = \sin \left(\frac{\pi}{2} - \theta \right)\,
แทนเจนต์ (Tangent)tan
(หรือ tg)
\tan \theta = \frac{1}{\cot \theta} = \frac{\sin \theta}{\cos \theta} = \cot \left(\frac{\pi}{2} - \theta \right)  \,
โคแทนเจนต์ (Cotangent)cot
(หรือ ctg หรือ ctn)
\cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta} = \tan \left(\frac{\pi}{2} - \theta \right) \,
ซีแคนต์ (Secant)sec\sec \theta = \frac{1}{\cos \theta} = \csc \left(\frac{\pi}{2} - \theta \right) \,
โคซีแคนต์ (Cosecant)csc
(หรือ cosec)
\csc \theta =\frac{1}{\sin \theta} = \sec \left(\frac{\pi}{2} - \theta \right) \,
ความสัมพันธ์ระหว่างฟังก์ชันเหล่านี้ อยู่ในบทความเรื่อง เอกลักษณ์ตรีโกณมิติ

    นิยามจากรูปสามเหลี่ยมมุมฉาก

    ในการนิยามฟังก์ชันตรีโกณมิติสำหรับมุม A เราจะกำหนดให้มุมใดมุมหนึ่งในรูปสามเหลี่ยมมุมฉากเป็นมุม A
    เรียกชื่อด้านแต่ละด้านของรูปสามเหลี่ยมตามนี้
    • ด้านตรงข้ามมุมฉาก (hypotenuse) คือด้านที่อยู่ตรงข้ามมุมฉาก หรือเป็นด้านที่ยาวที่สุดของรูปสามเหลี่ยมมุมฉาก ในที่นี้คือ h
    • ด้านตรงข้าม (opposite side) คือด้านที่อยู่ตรงข้ามมุมที่เราสนใจ ในที่นี้คือ a
    • ด้านประชิด (adjacent side) คือด้านที่อยู่ติดกับมุมที่เราสนใจและมุมฉาก ในที่นี้คือ b
    จะได้
    1). ไซน์ ของมุม คือ อัตราส่วนของความยาวด้านตรงข้าม ต่อความยาวด้านตรงข้ามมุมฉาก ในที่นี้คือ
    sin(A) = ข้าม/ฉาก = a/h
    2). โคไซน์ ของมุม คือ อัตราส่วนของความยาวด้านประชิด ต่อความยาวด้านตรงข้ามมุมฉาก ในที่นี้คือ
    cos(A) = ชิด/ฉาก = b/h
    3). แทนเจนต์ ของมุม คือ อัตราส่วนของความยาวด้านตรงข้าม ต่อความยาวด้านประชิด ในที่นี้คือ
    tan(A) = ข้าม/ชิด = a/b
    4). โคซีแคนต์ csc(A) คือฟังก์ชันผกผันการคูณของ sin(A) นั่นคือ อัตราส่วนของความยาวด้านตรงข้ามมุมฉาก ต่อความยาวด้านตรงข้าม
    csc(A) = ฉาก/ข้าม = h/a
    5). ซีแคนต์ sec(A) คือฟังก์ชันผกผันการคูณของ cos(A) นั่นคือ อัตราส่วนของความยาวด้านตรงข้ามมุมฉาก ต่อความยาวด้านประชิด
    sec(A) = ฉาก/ชิด = h/b
    6). โคแทนเจนต์ cot(A) คือฟังก์ชันผกผันการคูณของ tan(A) นั่นคือ อัตราส่วนของความยาวด้านประชิด ต่อความยาวด้านตรงข้าม
    cot(A) = ชิด/ข้าม = b/a

    วิธีจำ

    วิธีจำอย่างง่าย ๆ คือจำว่า ข้ามฉาก ชิดฉาก ข้ามชิด ซึ่งหมายความว่า

    • ข้ามฉาก ... sin = ด้านตรงข้าม/ด้านตรงข้ามมุมฉาก
    • ชิดฉาก ... cos = ด้านประชิด/ด้านตรงข้ามมุมฉาก
    • ข้ามชิด ... tan = ด้านตรงข้าม/ด้านประชิด
    • นิยามด้วยวงกลมหนึ่งหน่วย

      ฟังก์ชันตรีโกณมิติทั้ง 6 ฟังก์ชัน สามารถนิยามด้วยวงกลมหนึ่งหน่วย ซึ่งเป็นวงกลมที่มีรัศมียาว 1 หน่วย และมีจุดศูนย์กลางอยู่ที่จุดกำเนิด วงกลมหนึ่งหน่วยช่วยในการคำนวณ และหาค่าฟังก์ชันตรีโกณมิติสำหรับอาร์กิวเมนต์ที่เป็นบวกและลบได้ ไม่ใช่แค่ 0 ถึง π/2 เรเดียนเท่านั้น สมการของวงกลมหนึ่งหน่วยคือ:
      x^2 + y^2 = 1 \,
      จากรูป เราจะวัดมุมในหน่วยเรเดียน โดยให้มุมเป็นบวกในทิศทวนเข็มนาฬิกา และมุมเป็นลบในทิศตามเข็มนาฬิกา ลากเส้นให้ทำมุม θ กับแกน x ด้านบวก และตัดกับวงกลมหนึ่งหน่วย จะได้ว่าพิกัด x และ y ของจุดตัดนี้จะเท่ากับ cos θ และ sin θ ตามลำดับ เหตุผลเพราะว่ารูปสามเหลี่ยมที่เกิดขึ้นนั้น จะมีความยาวด้านตรงข้ามมุมฉาก ยาวเท่ากับรัศมีวงกลม นั่นคือยาวเท่ากับ 1 หน่วย เราจะได้ sin θ = y/1 และ cos θ = x/1 วงกลมหนึ่งหน่วยช่วยให้เราหากรณีที่สามเหลี่ยมมีความสูงเป็นอนันต์ (เช่น มุม π/2 เรเดียน) โดยการเปลี่ยนความยาวของด้านประกอบมุมฉาก แต่ด้านตรงข้ามมุมฉากยังยาวเท่ากับ 1 หน่วย เท่าเดิม
      ฟังก์ชัน f(x) = sin(x) และ f(x) = cos(x) ที่วาดบนระนาบคาร์ทีเซียน
      สำหรับมุมที่มากกว่า 2π หรือต่ำกว่า −2π เราสามารถวัดมุมได้ในวงกลม ด้วยวิธีนี้ ค่าไซน์และโคไซน์จึงเป็นฟังก์ชันเป็นคาบที่มีคาบเท่ากับ 2π:
      \sin\theta = \sin\left(\theta + 2\pi k \right)
      \cos\theta = \cos\left(\theta + 2\pi k \right)
      เมื่อ θ เป็นมุมใดๆ และ k เป็นจำนวนเต็มใดๆ
      คาบที่เป็นบวกที่เล็กที่สุดของฟังก์ชันเป็นคาบ เรียกว่า คาบปฐมฐานของฟังก์ชัน คาบปฐมฐานของไซน์, โคไซน์, ซีแคนต์ หรือโคซีแคนต์ จะเท่ากับวงกลมหนึ่งวง นั่นคือเท่ากับ 2π เรเดียน หรือ 360 องศา คาบปฐมฐานของแทนเจนต์ หรือโคแทนเจนต์ จะเท่ากับครึ่งวงกลม นั่นคือเท่ากับ π เรเดียน หรือ 180 องศา
      จากข้างบนนี้ ค่าไซน์และโคไซน์ถูกนิยามจากวงกลมหนึ่งหน่วยโดยตรง แต่สี่ฟังก์ชันตรีโกณมิติที่เหลือจะถูกนิยามโดย
      \tan\theta = \frac{\sin\theta}{\cos\theta}
      \sec\theta = \frac{1}{\cos\theta}
      \csc\theta = \frac{1}{\sin\theta}
      \cot\theta = \frac{\cos\theta}{\sin\theta}
      ฟังก์ชันตรีโกณมิติพื้นฐานทั้งหมด สามารถนิยามจากวงกลมหนึ่งหน่วยได้โดยใช้วงกลมหนึ่งหน่วย ที่จุดศูนย์กลางอยู่ที่จุด O
      ฟังก์ชันตรีโกณมิติพื้นฐานทั้งหมด สามารถนิยามจากวงกลมหนึ่งหน่วยได้โดยใช้วงกลมหนึ่งหน่วย ที่จุดศูนย์กลางอยู่ที่จุด O (ตามรูปทางขวา) ซึ่งคล้ายกับการนิยามเชิงเรขาคณิตที่ใช้กันมาในสมัยก่อน ให้ AB เป็นคอร์ดของวงกลม ซึ่ง θ เป็นครึ่งหนึ่งของมุมที่รองรับคอร์ดนั้น จะได้
      • sin(θ) คือ ความยาว AC (ครึ่งหนึ่งของคอร์ด) นิยามนี้เริ่มใช้โดยชาวอินเดีย
      • cos(θ) คือระยะทางตามแนวนอน OC
      • versin(θ) = 1 − cos(θ) คือ ความยาว CD
      • tan(θ) คือ ความยาวของส่วน AE ของเส้นสัมผัสที่ลากผ่านจุด A จึงเป็นที่มาของคำว่าแทนเจนต์นั่นเอง (tangent = สัมผัส)
      • cot(θ) คือ ส่วนของเส้นสัมผัสที่เหลือ คือความยาว AF
      • sec(θ) = OE และ
      • csc(θ) = OF เป็นส่วนของเส้นซีแคนต์ (ตัดวงกลมที่จุดสองจุด) ซึ่งสามารถมองว่าเป็นภาพฉายของ OA ตามแนวเส้นสัมผัสที่จุด A ไปยังแกนนอนและแกนตั้ง ตามลำดับ
      • exsec(θ) = DE = sec(θ) − 1 (ส่วนของซีแคนต์ด้านนอก)
      ด้วยวิธีสร้างเหล่านี้ ทำให้เห็นภาพฟังก์ชันซีแคนต์และแทนเจนต์ลู่ออก เมื่อ θ เข้าใกล้ π/2 (90 องศา) และโคซีแคนต์และโคแทนเจนต์ลู่ออก เมื่อ θ เข้าใกล้ศูนย์ (เราสามารถพิสูจน์เอกลักษณ์ตรีโกณมิติด้วยรูปภาพได้)

      นิยามด้วยอนุกรม

      โดยการใช้เรขาคณิตและคุณสมบัติของลิมิต เราแสดงได้ว่าอนุพันธ์ของไซน์คือโคไซน์ และอนุพันธ์ของไคโซน์คือค่าลบชองไซน์ เราสามารถใช้อนุกรมเทย์เลอร์สำหรับแสดงเอกลักษณ์ต่อไปนี้สำหรับทุกจำนวนจริง x:
      \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots = \sum_{n=0}^\infty \frac{(-1)^nx^{2n+1}}{(2n+1)!}
      \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots = \sum_{n=0}^\infty \frac{(-1)^nx^{2n}}{(2n)!}
      เอกลักษณ์เหล่านี้มักใช้เป็น นิยาม ของฟังก์ชันไซน์ และโคไซน์ ซึ่งนำไปใช้เป็นจุดเริ่มต้นแบบเข้มของฟังก์ชันตรีโกณมิติ และการประยุกต์ของมัน (เช่น อนุกรมฟูรีเย) เพราะว่ามันมีพื้นฐานอยู่บนระบบจำนวนจริง ไม่ขึ้นกับการตีความทางเรขาคณิตใดๆ การหาอนุพันธ์ได้และความต่อเนื่องของฟังก์ชันก็มาจากนิยามนี้

      เอกลักษณ์

      \sin \left(x+y\right)=\sin x \cos y + \cos x \sin y
      \sin \left(x-y\right)=\sin x \cos y - \cos x \sin y
      \cos \left(x+y\right)=\cos x \cos y - \sin x \sin y
      \cos \left(x-y\right)=\cos x \cos y + \sin x \sin y
      \sin x+\sin y=2\sin \left( \frac{x+y}{2} \right) \cos \left( \frac{x-y}{2} \right)
      \sin x-\sin y=2\cos \left( \frac{x+y}{2} \right) \sin \left( \frac{x-y}{2} \right)
      \cos x+\cos y=2\cos \left( \frac{x+y}{2} \right) \cos \left( \frac{x-y}{2} \right)
      \cos x-\cos y=-2\sin \left( \frac{x+y}{2} \right)\sin \left( \frac{x-y}{2} \right)
      \tan x+\tan y=\frac{\sin \left( x+y\right) }{\cos x\cos y}
      \tan x-\tan y=\frac{\sin \left( x-y\right) }{\cos x\cos y}
      \cot x+\cot y=\frac{\sin \left( x+y\right) }{\sin x\sin y}
      \cot x-\cot y=\frac{-\sin \left( x-y\right) }{\sin x\sin y}

    ไม่มีความคิดเห็น:

    แสดงความคิดเห็น